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a b s t r a c t

Vibration measurements offer an effective, inexpensive and fast means of non-

destructive testing of structures and various engineering components. There are mainly

two approaches to crack detection through vibration testing; open crack model with

emphasis on changes in modal parameters and secondly, the breathing crack model

response characteristics can identify the crack only at an advanced stage. Researchers

have shown that a structure with a breathing crack behaves more like a nonlinear

system, similar to that of a bilinear oscillator and the nonlinear response characteristics

can very well be investigated to identify the presence of the crack. In the present study,

the bilinear restoring force is approximated by a polynomial series and a nonlinear

dynamic model of the cracked structure is developed using higher order frequency

response functions. The effect of crack severity on the response harmonic amplitudes

are investigated and a new procedure is suggested whereby the crack severity can be

estimated through measurement of the first and second harmonic amplitudes.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Structural health monitoring for damage assessment and residual life prediction has become an important research area
in the recent past. Failures in structures and machine elements can be prevented through early detection of fatigue cracks
using various non-destructive testing methods. Traditional non-destructive testing methods include dye-penetrant test,
magnetic particle inspection, ultrasonic test etc, which have their own limitations and are often very expensive and
inconclusive. Alternately, vibration based methods offer an effective, fast and convenient diagnostic tool for detection of
the fatigue cracks in machine elements and structural systems. There are mainly two approaches to crack detection
through vibration testing; open crack model with emphasis on changes in modal parameters and breathing crack model
focusing on nonlinear response characteristics. In the first approach, crack is considered to be always open and it is
modeled as a local flexibility [1] in the structure. Crack size and its location are investigated through changes in modal
parameters such as natural frequency [2–5] and damping factor [6]. This approach, however, suffers from two major
limitations. First, the changes in natural frequencies have been found to be significant only for a large crack size [7] and
secondly, the measured shift in natural frequency cannot be conclusively attributed to crack alone, as it can also be affected
by other factors such as wear, relaxation etc.

Recently, researchers have concentrated on nonlinear response characteristics of the cracked beam and have shown
that the nonlinear behavior can be explained by the bilinear stiffness model of a breathing crack which opens and closes
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during a vibration cycle. Shen and Chu [8] formulated the bilinear equation of a simply supported beam using Galerkin
procedure and obtained the response through numerical analysis. Chu and Shen [9] obtained a closed form solution for the
bilinear oscillator under low frequency excitation and suggested that the changes in the dynamic behavior of cracked
structures can be used to identify the size and location of the crack. Chati et al. [10] analysed the dynamics of a cracked
beam as a piecewise linear system and obtained the bilinear frequency in terms of the two natural frequencies of the
piecewise linear systems. Rivola and White [11] modeled the bilinear variation in the restoring force using Fourier series
and employed bispectral analysis of response for the detection of a fatigue crack. The authors suggested that bicoherence,
which is normalized version of the bispectrum, can be used as an indicator for the crack detection. Deviating from the
bilinear model, Abraham and Brandon [12] considered the stiffness variation to be continuous and used Fourier series to
simulate the varying restoring force. Sundermeyer and Weaver [13] examined the response of a cracked beam, forced at
two frequencies with their difference equal to the resonant frequency of the system. Chondros and Dimarogonas [14],
Tsyfansky et al. [15] have studied the nonlinear response characteristics of a cracked beam by continuous system
modeling, whereas few other researchers [16–19] have modeled the effect as a local change in the stiffness matrix of a
discrete system model. These research works mainly provide qualitative understanding of the nonlinear response
characteristics of a cracked beam and very few have attempted quantitative assessment of the crack.

The present study explores the use of Volterra series response representation for developing a quantitative damage
assessment technique for a cantilever beam with an edge crack. Volterra series [20,21] represents a nonlinear system
through a set of first and higher order frequency response functions (FRFs). Several methods have been suggested [22,23]
on parametric and non-parametric identification of polynomial form nonlinearities through measurement and analysis of
these higher order FRFs. Rutolo et al. [24] have measured first and higher order FRFs from the response of a bilinear
oscillator and observed that second- and fourth-order FRFs are more sensitive to the size of a crack than the first-order FRF.
Very recently, Peng et al. have introduced the concept of nonlinear output frequency response function (NOFRF) and
observed that the presence of a crack can be detected through investigation of various harmonic peaks in the NOFRF [25].
In the present work, the bilinear restoring force function of a cracked cantilever beam is approximated by a finite term
polynomial series and the response amplitudes under harmonic excitation are obtained using Volterra series response
representation. A procedure is then suggested for estimating the structural damage through measurement of the first and
second harmonic amplitudes. The method is illustrated with numerical simulation for two different damage levels and it is
found that the procedure provides an accurate estimation of the damage, even when the crack size is very small.
2. Volterra series response representation

Volterra series represents the input–output mapping of a physical system, with f(t) as input excitation and x(t) as
output response, in a form of functional series given by

xðtÞ ¼

Z 1
�1

h1ðt1Þf ðt�t1Þdt1þ

Z 1
�1

Z 1
�1

h2ðt1; t2Þf ðt�t1Þf ðt�t2Þdt1 dt2

þ

Z 1
�1

Z 1
�1

Z 1
�1

h3ðt1; t2; t3Þf ðt�t1Þf ðt�t2Þf ðt�t3Þ dt1 dt2 dt3þ � � �

¼ x1ðtÞþx2ðtÞþ � � � þxnðtÞþ � � � (1)

with nth order response component, xn(t), expressed as

xnðtÞ ¼

Z 1
�1

� � �

Z 1
�1

hnðt1; . . . ; tnÞf ðt�t1Þ � � � f ðt�tnÞdt1 � � �dtn (2)

h1ðt1Þ, is the familiar impulse response function of a linear system and hnðt1; . . . ; tnÞ are the nth order Volterra kernels.
Higher order frequency response functions or Volterra kernel transforms can be defined as the multi-dimensional Fourier
transforms of the higher order Volterra kernels as

Hnðo1;o2; . . . ;onÞ ¼

Z 1
�1

Z 1
�1

Z 1
�1

hnðt1; t2; . . . ; tnÞ
Yn

i ¼ 1

e�joiti dt1dt2 � � � dtn (3)

For a single-degree-of-freedom system, with polynomial form of stiffness nonlinearity, given by the equation of motion

m €xðtÞþc _xðtÞþk1xðtÞþk2x2ðtÞþk3x3ðtÞþ � � � ¼ f ðtÞ (4)

with harmonic excitation

f ðtÞ ¼ A cosot¼
A

2
ejotþ

A

2
e�jot (5)

the response, using Volterra series (1), is obtained as

xðtÞ ¼
X1
n ¼ 1

A

2

� �n X
pþq ¼ n

nCqHp;q
n ðoÞe

jop;qt (6)
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where Hp;q
n ðoÞ are the higher order FRFs given by

Hp;q
n ðoÞ ¼Hnðo; . . . ;o|fflfflfflfflffl{zfflfflfflfflffl}

p times

;�o; . . . ;�o|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
q times

Þ op;q ¼ ðp�qÞo (7)

For the polynomial form nonlinearity as given in Eq. (4), higher order FRFs can be synthesized from the lower order
FRFs and the nonlinear parameters. After substituting Eq. (6) in the governing equation of motion (4) and equating the
coefficients of A

2

� �n
ejop;qt , n=1, 2, 3y, one obtains

Hp;q
n ðoÞ ¼�

H1ðop;qÞ

nCq

k2
P

piþqi ¼ ni

n1þn2 ¼ n

fn1 Cq1
Hp1 ;q1

n1
ðoÞg�fn2 Cq2

Hp2 ;q2
n2
ðoÞgþ

k3
P

piþqi ¼ ni

n1þn2þn3 ¼ n

fn1 Cq1
Hp1 ;q1

n1
ðoÞg�fn2 Cq2

Hp2 ;q2
n2
ðoÞg�fn3 Cq3

Hp3 ;q3
n3
ðoÞg

2
6666664

3
7777775

for n41 (8)

2.1. Response harmonic amplitudes

For a harmonic excitation, response series given in (6) will consists of several harmonics and can be expressed
as

xðtÞ ¼ X0þjXðoÞjcosðotþf1ÞþjXð2oÞjcosð2otþf2ÞþjXð3oÞjcosð3otþf3Þþ � � � (9)

where the response harmonic amplitudes, XðnoÞ, are obtained as

XðnoÞ ¼
X1
i ¼ 1

siðnoÞ and fn ¼+XðnoÞ (10)

with

siðnoÞ ¼ 2
A

2

� �nþ2i�2
nþ2i�2Ci�1Hnþ i�1;i�1

nþ2i�2 ðoÞ (11)

Response amplitude for the first three harmonics, o;2o and 3o, thus can be expressed as

XðoÞ ¼ AH1ðoÞþ
3A3

4
H3ðo;o;�oÞþhigher order terms (12a)

Xð2oÞ ¼ A2

2
H2ðo;oÞþ

A4

2
H4ðo;o;o;�oÞþhigher order terms (12b)

Xð3oÞ ¼ A3

4
H3ðo;o;oÞþhigher order terms (12c)

The higher order FRFs appearing in the harmonic amplitude series (Eqs. (12a–c)) can be synthesized from first-order FRFs
and the nonlinear parameters, using Eq. (8), as

H2ðo;oÞ ¼�k2H2
1ðoÞH1ð2oÞ (13a)

H3ðo;o;oÞ ¼H3
1ðoÞH1ð3oÞ½2k2

2H1ð2oÞ�k3� (13b)

H3ðo;o;�oÞ ¼H3
1ðoÞH1ð�oÞ

2

3
k2

2 H1ð2oÞþ2H1ð0Þ
� �

�k3

	 

(13c)

H4ðo;o;o;�oÞ ¼�
H1ð2oÞ

4
k2 2H1ð�oÞH3ðo;o;oÞþ6H1ðoÞH3ðo;o;�oÞþ4H2ðo;oÞH2ðo;�oÞ
� ��

þk3f6H2
1ðoÞH2ðo;�oÞþ6H1ðoÞH1ð�oÞH2ðo;oÞg

�
(13d)

Some important observations can be noted here about the response harmonics as under
(a)
 Odd harmonics are associated with odd order kernel transforms and even harmonics are associated with even order
kernel transforms.
(b)
 Harmonic series, XðnoÞ, comprises of nth and higher order kernel transforms only.

(c)
 Second-order FRF, H2ðo;oÞ, is related only to the stiffness parameter, k2, but third- and fourth-order FRFs are related to

both the stiffness parameters, k2 and k3.
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3. Bilinear modeling of the breathing crack in a cantilever beam

An ideal bilinear oscillator is a single-degree-of-freedom spring-mass-damper system (Fig. 1) with stiffness having two
different values and can be represented by the equation of motion

m €xðtÞþc _xðtÞþg½xðtÞ� ¼ f ðtÞ (14)

where

g½xðtÞ� ¼ akxðtÞ

with

a¼ 1 for xðtÞ!0 and a!1 for xðtÞZ0

A cantilever beam with a breathing edge crack (Fig. 2) also exhibits bilinear stiffness characteristics depending on
whether the crack is open or closed. Using finite element method, the equation of motion can be expressed in terms of the
mass, stiffness and damping matrices as

½M�f €uðtÞgþ½C�f _uðtÞgþ½K�fuðtÞg ¼ fFðtÞg when the crack is closed (15)

and

½M�f €uðtÞgþ½C�f _uðtÞgþ½K�DK�fuðtÞg ¼ fFðtÞg when the crack is open (16)

The term DK in above equation represents the reduction in the stiffness matrix due to the crack and is a function of crack
size as well as of crack location. Let fi be the mass normalized individual mode shapes of the eigen value problem
corresponding to Eq. (15) such that the modal matrix can be expressed as

½F� ¼ ½f1 f2 � � � fn�

Using the coordinate transformation fuðtÞg ¼ ½F�fqðtÞg and after pre-multiplying Eq. (15) and Eq. (16) by fT
1, one obtains the

single-degree-of-freedom equation

€q1ðtÞþ2z1

ffiffiffi
a
p

o1 _q1ðtÞþao2
1q1ðtÞ ¼ f1ðtÞ (17)

where z1 and o1 are respectively modal damping and natural frequency of the un-cracked beam in the first mode and

a¼ fT
1½K�DK�f1

o2
1

when the crack is open and a=1, when the crack is closed.
Here damping matrix [C] has been assumed to be proportional and q1(t) represents the vibration displacement in the

first mode. One can observe that Eq. (17) is similar to that of the bilinear oscillator given by Eq. (14). The forced vibration of
the beam is generally dominated by the fundamental mode because of the frequency range of excitations and higher values
(1-α) k

αk

c

m

x(t)

f(t)

Fig. 1. Bilinear oscillator model of a spring mass damper system.

Y
u (t)

X

L

crack 

Fig. 2. A cantilever beam with an edge crack.
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of modal damping in higher modes. Thus, forced vibration response of the cracked beam can very well be studied through
the bilinear model as given in Eq. (14), where the parameter a represents the severity of the crack. As the crack depth
increases, value of a decreases and the asymmetry in the restoring force increases (Fig. 3). In the following sections,
a mathematical procedure based on Volterra series and higher order FRFs is presented for investigation of the spectral
response characteristics, which is then employed for the crack severity assessment through measurement of first and
second harmonic amplitudes in the response.

4. Harmonic amplitudes of the cracked beam through Volterra series

To obtain the response harmonic amplitudes through Volterra series, restoring force g½xðtÞ� due to the bilinear stiffness
of the cracked beam is approximated with a polynomial form ĝ ½xðtÞ� given as

ĝ ½xðtÞ� ¼ g0þk1xðtÞþk2x2ðtÞþk3x3ðtÞþ � � � (18)

Since the bilinear restoring force g½xðtÞ� is a continuous function over the interval (�X,X) of vibration displacement, it can
be approximated to any desired accuracy with the polynomial ĝ ½xðtÞ� with suitable number of power terms in it
(Weierstrass approximation theorem [26]). For the sake of simplicity here, the polynomial is considered up to the cubic
power term and the coefficients, k1, k2, k3 are computed by minimizing the error function E, given as

Eðk1; k2; k3Þ ¼

Z X

�X
fg½xðtÞ��ĝ ½xðtÞ�g2 dx (19)

Applying @E=@ki ¼ 0 for i¼ 1;2;3 the coefficients are obtained as

k1 ¼
ð1þaÞ

2
k; k2 ¼�

15ð1�aÞ
32X

k; k3 ¼ 0 (20)

From Eq. (12b), it can be seen that the harmonic amplitude, Xð2oÞ, is associated with second-order kernel transform,
H2ðo;oÞ, which is a function of the nonlinear parameter, k2 (Eq. (13a)). The asymmetry in the bilinear restoring force leads
to a non-zero value of k2 in the polynomial approximation and explains the characteristic presence of the second harmonic
in the response spectrum of a bilinear oscillator (Fig. 4a), where the non-dimensional frequency r¼o=

ffiffiffiffiffiffiffiffiffiffi
k=m

p
. On the other

hand for system nonlinearity of symmetric form (i.e., f ð�xÞ ¼�f ðxÞ as for a Duffing oscillator), only odd harmonics will
be present in the response spectrum (Fig. 4b). Thus presence of even harmonics in the response spectrum indicates that the
nonlinearity form is asymmetric as in the case of a bilinear oscillator. This forms the fundamental basis for detecting the
presence of crack in a beam and other structural members. One has to note here that although the stiffness parameter k3

happens to be zero for the bilinear function, third-order FRF, H3ðo;o;oÞ will have non-zero value due to the parameter, k2

and hence third harmonic will also be found in the response spectrum of the bilinear oscillator.
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Fig. 4. (a) Response spectrum for bilinear oscillator with excitation frequency, r=0.45 and (b) response spectrum for Duffing oscillator with excitation
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The polynomial approximation of the restoring force function of a bilinear oscillator, as given in Eq. (18), provides a
basis to obtain the response harmonic amplitudes using higher order FRFs. The first and second harmonic response
amplitude, following Eqs. (13a–d), then can be expressed as

XðoÞ ¼ AH1ðoÞþ
A3

2
k2

2 H1ð2oÞþ2H1ð0Þ
� �

H3
1ðoÞH1ð�oÞþhigher order terms (21a)

Xð2oÞ ¼�A2

2
k2H2

1ðoÞH1ð2oÞþhigher order terms (21b)

The response amplitudes of the first and second harmonics with excitation frequency varying over a range of
o=

ffiffiffiffiffiffiffiffiffiffi
k=m

p
¼ 0:1�1:3 for two values of a=0.95 and a=0.9 have been obtained through numerical simulation and presented
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in Fig. 5a,b. It can be seen that the peak in first harmonic amplitude occurs slightly below o=
ffiffiffiffiffiffiffiffiffiffi
k=m

p
¼ 1. Actually the peak

occurs at the bilinear natural frequency values ob=
ffiffiffiffiffiffiffiffiffiffi
k=m

p
¼ 0:987 for a=0.95 and at ob=

ffiffiffiffiffiffiffiffiffiffi
k=m

p
¼ 0:974 for a=0.9. Bilinear

frequencies can be computed as [10,25]

ob ¼
2o0o1

o0þo1
¼

2
ffiffiffi
a
p

1þ
ffiffiffi
a
p o0 (22)

where o0 and o1 are respectively the fundamental natural frequency of the beam in un-cracked and cracked conditions.

Figs. 5a,b also indicate that the second harmonic amplitude is much lower than that of the first harmonic and this is an
important point for practical signal measurement in presence of background and instrumental noise. The amplitude
however is relatively higher in the neighborhood of o¼ob=2 and o¼ob. It is therefore recommended to use the
excitation frequency in the vicinity of these frequencies to get measurable signal strength for the second harmonic in the
response. It can also be observed from Figs. 5(a, b) that second harmonic amplitude increases as a decreases and there is no
appreciable change in the first harmonic amplitude. This can be explained with the response harmonic series in Eq. (21b).
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Fig. 5. (a) Response harmonic amplitudes for a=0.95 and (b) response harmonic amplitudes for a=0.9.
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As a decreases for a growing crack, the nonlinear parameter k2 increases (Eq. 20) and thus the harmonic amplitude Xð2oÞ
which is directly related to k2 (Eq. (21b)) also increases. The value of 1�a can be used as an indicator of the crack severity
and may be termed as crack severity index (CSI). Fig. 6 shows the variation in the spectral amplitudes of the first and
second harmonic for different crack depth depicted by crack severity index varying between 0.01 to 0.10 for typical
excitation frequencies o=

ffiffiffiffiffiffiffiffiffiffi
k=m

p
¼ 0:3 and 0:4. It can be seen that the second harmonic amplitude Xð2oÞ is much smaller

than the first harmonic amplitude XðoÞ for a small value of the index 1�a. In such cases an excitation frequency close to
half of bilinear natural frequency, such as o=

ffiffiffiffiffiffiffiffiffiffi
k=m

p
¼ 0:4 will give higher signal strength Xð2oÞ than an excitation

frequency o=
ffiffiffiffiffiffiffiffiffiffi
k=m

p
¼ 0:3. Fig. 7 shows the variation in spectral amplitude ratio Xð2oÞ=XðoÞ for different crack depth for

the excitation frequencies. It is significant to note that the ratio is almost proportional to the severity index and thus can be
potentially used as a measure of the damage. This aspect is further investigated through Volterra series expressions of the
harmonic amplitudes in the following section.
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Fig. 6. Response harmonic amplitudes at different damage levels.
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5. Assessment of crack severity from response harmonic amplitudes

Successive terms of the harmonic amplitude series, given in Eqs. (21a,b), are in the ratio of k2
2 and thus for weak

bilinearity with small value of k2, the harmonic amplitude series can very well be approximated by the first term only.
Eqs. (21a,b) then become

XðoÞ ¼ AH1ðoÞ (23a)

and

Xð2oÞ ¼� k2

2A
X2ðoÞX� ð2oÞ (23b)

where X� ð2oÞ represents harmonic amplitude measured at frequency 2o with excitation frequency also at 2o. Using the
relationship between k2 and a in Eq. (20), one obtains

Xð2oÞ ¼ 15ð1�aÞk
64A

XðoÞX� ð2oÞ (24)

or

1�a¼ 64

15

Xð0ÞXð2oÞ
XðoÞX� ð2oÞ (25)

where X(0) is the static deflection which can be experimentally obtained with a static load. The value of the crack severity
index (CSI), i.e., 1�a, can be easily estimated from experimental measurements using above Eq. (25). The procedure can be
formulated in following steps.

Step 1: The excitation frequency o and the excitation level A are appropriately selected such that second harmonic
amplitude is distinctly measurable in the response. If the fundamental natural frequency of the system is known a-priori,
one can select the excitation frequency close to half of it but not very close to the value. This also ensures that the vibration
response will be mainly dominated by the first mode.

Step 2: The time history of response x(t) is measured and the first and second harmonic amplitudes, XðoÞ and Xð2oÞ are
extracted from the response through Fourier series filtering. The system is then excited at twice the previous excitation
frequency and first harmonic amplitude X� ð2oÞ is measured.

Step 3: The value X(0) is obtained through a static loading test or can also be taken as X(o) for a low value of excitation
frequency o. Finally the crack severity index is estimated using Eq. (25).

To investigate the effectiveness of the proposed damage assessment technique, a numerical simulation is carried out for
the equation of motion (14) with damping ratio taken as 0.02. Excitation frequency is selected at o=

ffiffiffiffiffiffiffiffiffiffi
k=m

p
¼ 0:3 (Case I)

and o=
ffiffiffiffiffiffiffiffiffiffi
k=m

p
¼ 0:4 (Case II) and the crack severity index is varied between 0.01 and 0.10. Fig. 8 shows the accuracy of

estimation of the crack severity index for the two cases. The estimates are more accurate for smaller crack sizes
ða close to 1Þ. However, errors for larger crack sizes are higher (6.7% for Case I and 12.4% for Case II at 1�a=0.1). The errors
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can be attributed to the truncation of polynomial series representation of the bilinear restoring force in Eq. (18) and to first
term approximation of the response series given in Eqs. (21a,b). Case I, with excitation frequency relatively away from
half the bilinear natural frequency, gives more accurate estimation as the truncation error from higher order terms in
Eqs. (21a,b) decreases due to lower values of H1ðoÞ and H1ð2oÞ. However, when the crack size is small, response amplitude
Xð2oÞ may not be distinctly measurable if the excitation frequency is selected far away.

6. Conclusion

The nonlinear response of a cracked beam is analysed using Volterra series response representation. The bilinear
restoring force due to crack open and crack closed modes is approximated by a polynomial series and the first- and second-
order frequency response functions are developed in terms of the bilinear parameter. The effect of crack severity on the
response harmonic amplitudes are investigated and a new technique is suggested whereby the crack severity can
be estimated through measurement of the first and second harmonic amplitudes. The estimate is found to be more
accurate for smaller crack size. The procedure also discusses proper selection of the excitation level and excitation
frequency for the estimation.
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